Thursday, 28 September 2017

Internet Data Mining - How Does it Help Businesses?

Internet has become an indispensable medium for people to conduct different types of businesses and transactions too. This has given rise to the employment of different internet data mining tools and strategies so that they could better their main purpose of existence on the internet platform and also increase their customer base manifold.

Internet data-mining encompasses various processes of collecting and summarizing different data from various websites or webpage contents or make use of different login procedures so that they could identify various patterns. With the help of internet data-mining it becomes extremely easy to spot a potential competitor, pep up the customer support service on the website and make it more customers oriented.

There are different types of internet data_mining techniques which include content, usage and structure mining. Content mining focuses more on the subject matter that is present on a website which includes the video, audio, images and text. Usage mining focuses on a process where the servers report the aspects accessed by users through the server access logs. This data helps in creating an effective and an efficient website structure. Structure mining focuses on the nature of connection of the websites. This is effective in finding out the similarities between various websites.

Also known as web data_mining, with the aid of the tools and the techniques, one can predict the potential growth in a selective market regarding a specific product. Data gathering has never been so easy and one could make use of a variety of tools to gather data and that too in simpler methods. With the help of the data mining tools, screen scraping, web harvesting and web crawling have become very easy and requisite data can be put readily into a usable style and format. Gathering data from anywhere in the web has become as simple as saying 1-2-3. Internet data-mining tools therefore are effective predictors of the future trends that the business might take.


Article Source: http://EzineArticles.com/3860679

Tuesday, 26 September 2017

Data Collection Techniques for a Successful Thesis

Irrespective of the grade of the topic and the subject of research you have chosen, basic requirement and process of all remains same i.e. "research". Re-search in itself means searching on a searched content and this involves some proven fact along with some practical figures reflecting the authenticity and reliability of the study. These facts and figures which are required to prove the fundamentals of study are known as "data's".

These data's are collected according to the demand of research topic and its study undertaken. Also their collection techniques vary along with the topic in detail for example if the topic is like "Changing era of HR policies", the demanded data would be subjective and its technique thus depends on the same. Whereas if the topic is like "Causes of performance appraisal", then the demanded data would be objective and in the terms of figures which shows different parameters, reasons and factors affecting performance appraisal of different number of employees. So, let's have a broader look on the different data collection techniques which gives a reliable ground to your research -

• Primary Technique - Here, the data is collected by the first hand source directly are known as primary data's. Self-analysis is a sub classification of primary data collection - As understood; here you get self-response for a set of questions or a study. For example - personal in-depth interviews and questionnaires are self-analyzed data collection techniques, but its limitation lies in the fact that self-response can be sometimes biased or even confused. On the other, hand the advantage is in the court of most updated data as it is directly collected from the source.

• Secondary Technique - In this technique the data is collected from the pre-collected resources they are called as secondary data's. Data's are collected from articles, bulletins, annual reports, journals, published papers, government and non-government documents and case studies. Limitation of these is that they may not be the updated one or may be manipulated as it is not collected by the researcher itself.

Secondary data is easy to collect as they are pre-collected and are preferred when there is lack of time whereas primary data's are tough to amass. Thus, if researcher wants to bring up to date, reliable and factual data's they should prefer primary source of collection. But, these data collection techniques vary according to problem generated in the thesis. Hence, go through the demands of your thesis first before indulging yourself into data collection.

Source: http://ezinearticles.com/?Data-Collection-Techniques-for-a-Successful-Thesis&id=9178754

Data Collection, Just Another Way To Gather Information

Data collection just does not help the companies to launch new products or know about the public reaction to a specific issue, it is a very useful tool for statistical inferences, once the collected data is compiled. The process of data collection is the third step of the six step market research processes. Data collection can be done in two ways involving various technicalities. In this article, we shall give a brief overview of the same.

Data collection can be done in two ways - secondary data and primary data. Secondary data collection involves is the information available in books, journals, previous researches or studies and the Internet. It basically involves making use of the data already present to build or substantiate a concept.

On the other hand, primary data collection is the process of data collection through questionnaire by directly asking respondents of their opinions. Forming the right questionnaire is the most important aspect of data collection. The researcher conducting the data collection just has to be aware of the process. He should have a clear idea about the information sought by the concerned party.

Besides, the data collection officer should be able to construct the questionnaire in such a way so as to elicit the responses needed. Having constructed the questionnaire the researcher should identify the target sample. To illustrate the point clearly, we shall look into the following example.

Suppose, data collection is aimed from an area A, then, if all the residents of the data are given the questionnaire, it is called a census or in other words data collection is done from all the individuals of the specified area. One of the most common examples of data collection done by the government is census. For example the population census conducted by the US Census Bureau every ten years. On the other hand, if only twenty or thirty percent of the population living in area A are given the questionnaire, the mode of data collection would be called sampling.

The data collected from the target sample with a well-defined questionnaire will project the response of the entire population living in the area. Data collected from a sample helps to control the cost and time spent on collecting data from the population. Sample is a part of population.

Data collection just gets easier from the target sample with the help of a pretested questionnaire, which is later analyzed using statistical tests like ANOVA, Chi Square test and so on. These tests help the researcher to infer the result obtained from the data collection.

Market research/data collection is a fast growing and lucrative career option now days. One has to undertake a course in marketing, statistics and research before starting out. It is indeed very important to have a through understanding of various concepts and the theories related. Some basic terminologies related to data collection are: census, incidence, sample, population, parameters, sampling frames and so on.

Source: http://ezinearticles.com/?Data-Collection,-Just-Another-Way-To-Gather-Information&id=853158

Monday, 25 September 2017

How Web Crawling Can Help Venture Capital Firms

Venture capital firms are constantly on the lookout of innovative start-ups for investment. Whether you provide financial capital to early-stage start-ups in IT, software products, biotechnology or other booming industries, you will need the right information as soon as possible. In general, analysing media data to discover and validate insights is one of key areas in which analysts work. Hence, constantly monitoring popular media outlets is one of the ways VCs can deploy to spot trends. Read on to understand how web crawling can not only speed up this whole process but also improve the workflow and accuracy of insights.

What is web crawling

Web crawling simply refers to the use of automated computer programs to visit websites and extract specific bits of information. This is the same technology used by search engines to find, index and serve search results for user queries. Web crawling, as you’d have guessed is a technical and niche process. It takes skilled programmers to write programs that can navigate through the web to find and extract the needed data.

There are DIY tools, vertical specific data providers and DaaS (Data as a service) solutions that VC firms can deploy for crawling.  Although there is the option of setting up an in-house crawling setup, this isn’t recommended for Venture Capital firms. The high tech-barrier and complexity of web crawling process can lead to loss of focus for the VC firms. DaaS can be the ideal option as it’s suitable for recurring and large-scale requirements which only a hosted solution can offer.

How web crawling can help Venture Capital firms

Crawling start-up and entrepreneurship blogs using a web crawling service can help VC firms avail the much-needed data that they can use to discover new trends and validate their research. This can complement the existing research process and make it much more efficient.

1. Spot trends

Spotting new trends in the market is extremely important for venture capital firms. This helps identify the niches that have high probability of bringing in profit. Since investing in companies that have higher chances of succeeding is what Venture capital firms do, the ability to spot trends becomes an invaluable tool.

Web crawling can harvest enough data to identify trends in the market. Websites like Techcrunch and Venturebeat are great sources of start-up related news and information. Media sites like these talk about trending topics constantly. To spot trends in the market, you could use a web crawling solution to extract the article title, date and URL for the current time period and run this data through an analytics solution to identify the most used words in the article titles and URLs. Venture capital firms can then use these insights to target newer companies in the trending niches. Technology blogs, forums and communities can be great places to find relevant start-ups.

2. Validate findings

The manual research by the analysts needs to be validated before the firm can go ahead with further proceedings. Validation can be done by comparing the results of the manual work with the relevant data extracted using web crawling. This not only makes validation much easier but also helps in the weeding out process, thus reducing the possibilities of making mistakes. This can be partially automated by using intelligent data processing/visualisation tools on top the data.

3. Save time

Machines are much faster than humans. Employing web crawling to assist in the research processes in a venture capital firm can save the analysts a lot of time and effort. This time can be further invested in more productive activities like analytics, deep research and evaluation.

Source:-https://www.promptcloud.com/blog/web-crawling-for-venture-capital-firms

Saturday, 22 July 2017

Why Customization is the Key Aspect of a Web Scraping Solution

Why Customization is the Key Aspect of a Web Scraping Solution

Every web data extraction requirement is unique when it comes to the technical complexity and setup process. This is one of the reasons why tools aren’t a viable solution for enterprise-grade data extraction from the web. When it comes to web scraping, there simply isn’t a solution that works perfectly out of the box. A lot of customization and tweaking goes into achieving a stable setup that can extract data from a target site on a continuous basis.

Customization web scraping service

This is why freedom of customization is one of the primary USPs of our web crawling solution. At PromptCloud, we go the extra mile to make data acquisition from the web a smooth and seamless experience for our client base that spans across industries and geographies. Customization options are important for any web data extraction project; Find out how we handle it.

The QA process

The QA process consists of multiple manual and automated layers to ensure only high-quality data is passed on to our clients. Once the crawlers are programmed by the technical team, the crawler code is peer reviewed to make sure that the optimal approach is used for extraction and to ensure there are no inherent issues with the code. If the crawler setup is deemed to be stable, it’s deployed on our dedicated servers.

The next part of manual QA is done once the data starts flowing in. The extracted data is inspected by our quality inspection team to make sure that it’s as expected. If issues are found, the crawler setup is tweaked to weed out the detected issues. Once the issues are fixed, the crawler setup is finalized. This manual layer of QA is followed by automated mechanisms that will monitor the crawls throughout the recurring extraction, hereafter.

Customization of the crawler

As we previously mentioned, customization options are extremely important for building high quality data feeds via web scraping. This is also one of the key differences between a dedicated web scraping service and a DIY tool. While DIY tools generally don’t have the mechanism to accurately handle dynamic and complex websites, a dedicated data extraction service can provide high level customization options. Here are some example scenarios where only a customizable solution can help you.

File download

Sometimes, the web scraping requirement would demand downloading of PDF files or images from the target sites. Downloading files would require a bit more than a regular web scraping setup. To handle this, we add an extra layer of setup along with the crawler which will download the required files to a local or cloud storage by fetching the file URLs from the target webpage. The speed and efficiency of the whole setup should be top notch for file downloads to work smoothly.

Resize images

If you want to extract product images from an Ecommerce portal, the file download customization on top of a regular web scraping setup should work. However, high resolution images can easily hog your storage space. In such cases, we can resize all the images being extracted programmatically in order to save you the cost of data storage. This scenario requires a very flexible crawling setup, which is something that can only be provided by a dedicated service provider.

Extracting key information from text

Sometimes, the data you need from a website might be mixed with other text. For example, let’s say you need only the ZIP codes extracted from a website where the ZIP code itself doesn’t have a dedicated field but is a part of the address text. This wouldn’t be normally possible unless you write a program to be introduced into the web scraping pipeline that can intelligently identify and separate the required data from the rest.
Extracting data points from site flow even if it’s missing in the final page

Sometimes, not all the data points that you need might be available on the same page. This is handled by extracting the data from multiple pages and merging the records together. This again requires a customizable framework to deliver data accurately.

Automating the QA process for frequently updated websites

Some websites get updated more of than others. This is nothing new; however, if the sites in your target list get updated at a very high frequency, the QA process could get time-consuming at your end. To cater to such a requirement, the scraping setup should run crawls at a very high frequency. Apart from this, once new records are added, the data should be run through a deduplication system to weed out the possibility of duplicate entries in the data. We can completely automate this process of quality inspection for frequently updated websites.

Source:https://www.promptcloud.com/blog/customization-is-the-key-aspect-of-web-scraping-solution

Thursday, 22 June 2017

Data Scraping Doesn’t Have to Be Hard

All You Need Is the Right Data Scraping Partner

Odds are your business needs web data scraping. Data scraping is the act of using software to harvest desired data from target websites. So, instead of you spending every second scouring the internet and copying and pasting from the screen, the software (called “spiders”) does it for you, saving you precious time and resources.

Departments across an organization will profit from data scraping practices.

Data scraping will save countless hours and headaches by doing the following:

- Monitoring competitors’ prices, locations and service offerings
- Harvesting directory and list data from the web, significantly improving your lead generation
- Acquiring customer and product marketing insight from forums, blogs and review sites
- Extracting website data for research and competitive analysis
- Social media scraping for trend and customer analysis
- Collecting regular or even real time updates of exchange rates, insurance rates, interest rates, -mortgage rates, real estate, stock prices and travel prices

It is a no-brainer, really. Businesses of all sizes are integrating data scraping into their business initiatives. Make sure you stay ahead of the competition by effectively data scraping.

Now for the hard part

The “why should you data scrape?” is the easy part. The “how” gets a bit more difficult. Are you savvy in Python and HTML? What about JavaScript and AJAX? Do you know how to utilize a proxy server? As your data collection grows, do you have the cloud-based infrastructure in place to handle the load? If you or someone at your organization can answer yes to these questions, do they have the time to take on all the web data scraping tasks? More importantly, is it a cost-effective use of your valuable staffing resources for them to do this? With constantly changing websites, resulting in broken code and websites automatically blacklisting your attempts, it could be more of a resource drain than anticipated.

Instead of focusing on all the issues above, business users should be concerned with essential questions such as:

- What data do I need to grow my business?
- Can I get the data I need, when I want it and in a format I can use?
- Can the data be easily stored for future analysis?
- Can I maximize my staffing resources and get this data without any programming knowledge or IT assistance?
- Can I start now?
- Can I cost-effectively collect the data needed to grow my business?

A web data scraping partner is standing by to help you!

This is where purchasing innovative web scraping services can be a game changer. The right partner can harness the value of the web for you. They will go into the weeds so you can spend your precious time growing your business.

Hold on a second! Before you run off to purchase data scraping services, you need to make sure you are looking for the solution that best fits your organisational needs. Don’t get overwhelmed. We know that relinquishing control of a critical business asset can be a little nerve-wracking. To help, we have come up with our steps and best practices for choosing the right data scraping company for your organisation.

1) Know Your Priorities

We have brought this up before, but when going through a purchasing decision process we like to turn to Project Management 101: The Project Management Triangle. For this example, we think a Euler diagram version of the triangle fits best.
Data Scraping and the Project Management Triangle

In this example, the constraints show up as Fast (time), Good (quality) and Cheap (cost). This diagram displays the interconnection of all three elements of the project. When using this diagram, you are only able to pick two priorities. Only two elements may change at the expense of the third:

- We can do the project quickly with high quality, but it will be costly
- We can do the project quickly at a reduced cost, but quality will suffer
- We can do a high-quality project at a reduced cost, but it will take much longer
Using this framework can help you shape your priorities and budget. This really, in turn, helps you search for and negotiate with a data scraping company.

2) Know your budget/resources.

This one is so important it is on here twice. Knowing your budget and staffing resources before reaching out to data scraping companies is key. This will make your search much more efficient and help you manage the entire process.

3) Have a plan going in.

Once again, you should know your priorities, budget, business objectives and have a high-level data scraping plan before choosing a data scraping company. Here are a few plan guidelines to get you started:

- Know what data points to collect: contact information, demographics, prices, dates, etc.
- Determine where the data points can most likely be found on the internet: your social media and review sites, your competitors’ sites, chambers of commerce and government sites, e-commerce sites your products/competitors’ products are sold, etc.
- What frequency do you need this data and what is the best way to receive it? Make sure you can get the data you need and in the correct format. Determine whether you can perform a full upload each time or just the changes from the previous dataset. Think about whether you want the data delivered via email, direct download or automatically to your Amazon S3 account.
- Who should have access to the data and how will it be stored once it is harvested?
- Finally, the plan should include what you are going to do with all this newly acquired data and who is receiving the final analysis.

4) Be willing to change your plan.

This one may seem counterintuitive after so much focus on having a game plan. However, remember to be flexible. The whole point of hiring experts is that they are the experts. A plan will make discussions much more productive, but the experts will probably offer insight you hadn’t thought of. Be willing to integrate their advice into your plan.

5) Have a list of questions ready for the company.

Having a list of questions ready for the data scraping company will help keep you in charge of the discussions and negotiations. Here are some points that you should know before choosing a data scraping partner:
- Can they start helping you immediately? Make sure they have the infrastructure and staff to get - you off the ground in a matter of weeks, not months.
- Make sure you can access them via email and phone. Also make sure you have access to those -actually performing the data scraping, not just a call center.
- Can they tailor their processes to fit with your requirements and organisational systems?
- Can they scrape more than plain text? Make sure they can harvest complex and dynamic sites -with JavaScript and AJAX. If a website’s content can be viewed on a browser, they should be-- able to get it for you.
- Make sure they have monitoring systems in place that can detect changes, breakdowns, and -quality issues. This will ensure you have access to a persistent and reliable flow of data, even - when the targeted websites change formats.
- As your data grows, can they easily keep up? Make sure they have scalable solutions that could - handle all that unstructured web data.
- Will they protect your company? Make sure they know discretion is important and that they will not advertise you as a client unless you give permission. Also, check to see how they disguise their scrapers so that the data harvesting cannot be traced back to your business.

6) Check their reviews.

Do a bit of your own manual data scraping to see what others business are saying about the companies you are researching.

7) Make sure the plan the company offers is cost-effective.

Here are a few questions to ask to make sure you get a full view of the costs and fees in the estimate:
- Is there a setup fee?
- What are the fixed costs associated with this project?
- What are the variable costs and how are they calculated?
- Are there any other taxes, fees or things that I could be charged for that are not listed on this -quote?
- What are the payment terms?

Source Url :-http://www.data-scraping.com.au/data-scraping-doesnt-have-to-be-hard/

Saturday, 17 June 2017

How Artificial Intelligence Can be Applied to Web Data Extraction

How Artificial Intelligence Can be Applied to Web Data Extraction

Artificial intelligence is not a new topic at all. A lot has been written about it and it has been a popular theme of sci-fi movies from a decade ago. However, it was only recently that we started seeing AI in action. Thanks to the ever-increasing computing power, our machines are much faster and powerful now which also gives a huge boost to AI. It goes without saying that artificial intelligence requires more computing power to be truly intelligent and mimic the human brain.

artificial intelligence web data extraction

AI is finding its way into many everyday objects that we use. The voice assistant apps on your smartphone are a great example for this. Facebook’s face recognition algorithm is another example for intelligent pattern recognition technology in action. We believe that the extraction of data from web is something that humans shouldn’t be burdened with. Artificial intelligence could be the right solution to aggregating huge data sets from the web with minimal manual interference.

Artificial Intelligence VS Machine Learning

There is a stark difference between machine learning and artificial intelligence. In machine learning, you teach the machine to do something within narrowly defined rules along with some training examples. This training and rules are necessary for the machine learning system to achieve some level of success in the process it’s being taught. Whereas, in artificial intelligence, it does the teaching itself with minimal number of rules and loose training.  It can then go on to make rules for itself from the exposure that it gets, which contributes to the continued learning process. This is made possible by using artificial neural networks. Artificial neural networks and deep learning are used in artificial intelligence for speech and object recognition, image segmentation, modeling language and human motion.

Artificial intelligence in web data extraction

The web is a giant repository where data is vast and abundant. The possibilities that come with this amount of data can be ground breaking. The challenge is to navigate through this unstructured pile of information out there on the web and extract it. It takes a lot of time and effort to scrape data from the web, even with the advanced web scraping technologies. But things are about to change. Researchers from the Massachusetts Institute of Technology recently released a paper on an artificial intelligence system that can extract information from sources on the web and learn how to do it on its own.

The research paper introduces an information extraction system that can extract structured data from unstructured documents automatically. To put it simply, the system can think like humans while looking at a document. When humans cannot find a particular piece of information in a document, we find alternative sources to fill the gap. This adds to our knowledge on the topic in question. The AI system works just like this.
The AI system works on rewards and penalties

The working of this AI based data extraction system involves classifying the data with a ‘Confidence score’. This confidence score determines the probability of the classification being statistically correct and is derived from the patterns in the training data. If the confidence score doesn’t meet the set threshold, the system will automatically search the web for more relevant data. Once the adequate confidence score is achieved by extracting new data from the web and integrating it with the current document, it will deem the task successful. If the confidence score is not met, the process continues until the most relevant data has been pulled out.

This type of learning mechanism is called ‘Reinforcement learning’ and works by the notion of learning by reward. It’s very similar to how humans learn. Since there can be a lot of uncertainty associated with the data being merged together, especially where contrasting information is involved, the rewards are given based on the accuracy of the information. With the training provided, the AI learns how to optimally merge different pieces of data together so that the answers we get from the system is as accurate as possible.
AI in action

To test how well the artificial intelligence system can extract data from the web, researchers gave it a test task. The system was to analyse various data sources on mass shootings in the USA and extract the name of the shooter, number of injured, fatalities and the location. The performance was in fact mind blowing as it could pull up the accurate data the way it was needed while beating conventionally taught data extraction mechanisms by more than 10 percent.

The future of data extraction

With ever increasing need for data and the challenges associated with acquiring it, AI could be what’s missing in the equation. The research is promising and hints at a future where intelligent bots with human sight can read and crawl web documents to tell us the bits we need to know.

The AI system could be a game changer in research tasks that require a lot of manual work from humans now. A system like this will not only save time but also enables us to make use of the abundance of information out there on the web. Looking at the bigger picture, this new research is only a step towards creating the truly intelligent web spider that can master a variety of tasks just like humans rather than being focused at just one process.

Source:https://www.promptcloud.com/blog/artificial-intelligence-web-data-extraction